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Abstract
According to the optimal-velocity model, the condition for stable traffic flow is
deduced. Nonlinear analysis shows that the density fluctuation in traffic flow
itself induces two types of local density waves. A weak fluctuation occurring
near the stability state in a wide range of headways forms a soliton determined
by the Korteweg–de Vries (KdV) equation. The appearance of such a soliton
shows that drivers tend to reach the safety distance when they are away from
it. This density wave degenerates to a travelling wave at the critical point. A
strong fluctuation occurring around the critical point forms a kink or a soliton
determined by the modified Korteweg–de Vries (MKdV) equation.

PACS numbers: 45.70.Vn, 02.30.Ik, 02.30.Jr, 05.45.Yv

1. Introduction

Traffic problems have attracted the interest of a rapidly growing community of physicists
over many years [1–14, 17, 23–25]. Traffic flow, a many-body system of strongly interacting
vehicles, shows various complex behaviours. Many physical phenomena, such as nonlinear
waves and non-equilibrium phase transitions, have been revealed by recent studies. At present,
traffic problems have been investigated by many models: the car-following models [1–3],
the cellular automaton models [4–6], the gas kinetic models [7, 8], the hydrodynamic
models [9–12], and so on. Among these models, the car-following model has often produced
some important results owing to its concise form.

Vehicle density can fluctuate for various reasons to form a density wave in a traffic flow,
which connects with traffic jams. Lately, Kurtze and Hong [11] have derived the Korteweg–de
Vries (KdV) equation from the hydrodynamic model by nonlinear analysis. They concluded
that the density wave has a soliton form. Komatsu and Sasa [13] have obtained the modified
Korteweg–de Vries (MKdV) equation from the car-following model. They showed that the
density wave has a kink shape. Also, Muramatsu and Nagatani [14] derived the KdV and
MKdV equations through investigating the traffic flow under the open boundary condition.

The optimal-velocity (OV) model was proposed to describe a traffic flow more closely
on the basis of the car-following model by writing the headway as a function of high-order
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derivatives of vehicle density. The nonlinear theory shows that the soliton will be present in
a system with nonlinearity and dispersion when both factors balance each other [15, 16]. The
OV model itself is a nonlinear one, and the high-order derivatives of vehicle density provide
the dispersive term. Thus, the soliton can appear in the car-following model.

In the OV model, the OV function increases monotonically to its maximal value and has a
turning point (i.e. critical point) which corresponds to the safety distance. In this paper, we will
discuss the OV model in detail. The nonlinear analysis shows that a weak fluctuation occurring
in a wide range of headways forms a soliton determined by the KdV equation near the stability
state. It will degenerate to a travelling wave at the critical point. On the other hand, a strong
fluctuation occurring around the critical point will form a kink or soliton wave determined
by the MKdV equation. It is evident that a soliton with the up wave crest indicates the local
density will increase at a position with a larger vehicle distance than the safety distance. The
result shows that drivers tend to reduce the distance if there is enough space in front of them.
In contrast, drivers will increase the vehicle distance at the position where a soliton with the
down wave crest appears. Subsequently, spectrum parameter evolution has been followed
by the direct approach, which shows that the amplitude of the soliton tends to increase. In
addition, the KdV equation degenerates to a linear equation with a travelling wave at the critical
point. The kink wave manifests itself in that traffic congestion is uniquely determined when
the traffic flow is around the critical point.

Unlike the preceding studies on the OV model, in which the local density is induced by an
external perturbation, the local density wave is formed by the density fluctuation of the traffic
flow itself in our work.

2. Model and stability analysis

The OV model is quite a simple one whose equation exhibits traffic congestion. In the
model, the acceleration of every car is determined by its velocity vn and optimal speed V (bn),
depending on the headway bn as follows [2]:

v̇n = a[V (bn) − vn]. (1)

In this equation the overdot represents differentiation with respect to time, V (bn) = tanh(bn −
hc) + tanh(hc) is the OV with safety distance hc and a is the driver’s sensitivity, which equals
the inverse of the driver’s reaction time [2].

It is generally believed that the headway b and the traffic flow density ρ are correlated
with each other. It is noted that ρ(x) is the associated position function from which we can
find the vehicles. Following this, the conservation equation can be written as

ρt + (ρv)x = 0. (2)

Here v is the speed of the traffic flow. The headway b can be written as a perturbation series [17].
Inserting the approximate expression about headway b into equation (1), we can obtain the
traffic flow dynamics equation as follows:

vt + vvx = a[V (1/ρ) − v] − aV ′(1/ρ)

[
ρx

2ρ3
+

ρxx

6ρ4

]
. (3)

Writing the optimal speed as a function of density ρ, V̄ (ρ) = V (1/ρ) = tanh(1/ρ − hc)

+ tanh(hc), equation (3) can be rewritten as [17]

vt + vvx = a[V̄ (ρ) − v] + aV̄ ′(ρ)

[
ρx

2ρ
+

ρxx

6ρ2

]
. (4)

The above equation is a nonlinear one, and the ρxx term will cause a dispersive effect.
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Let us assume that traffic flow is initially in a state differing infinitesimally from
homogeneous flow. We decompose this flow into a linear combination of Fourier modes,
each of which grows or decays with its own growth rate. Thus we write [11](

ρ(x, t)

v(x, t)

)
=

(
ρh

vh

)
+

∑
k

(
ρ̂k

v̂k

)
exp(ikx + σkt). (5)

Substituting this expression into the governing equations (2) and (4) leads to the perturbation
equations:

ρ̂kσk + ρkv̂k(ik) + vhρ̂k(ik) = 0, (6)

v̂kσk + vh(ik)v̂k = a[V̄ ′(ρh)ρ̂k − v̂k] + aV̄ ′(ρh)

[
ikρ̂k

2ρh

− k2ρ̂k

6ρ2
h

]
. (7)

If the above equations in ρ̂k and v̂k are linearized, the coupled equations have no nontrivial
solution unless their coefficient determinant is zero, i.e.

(σk + ikvh)
2 + a(σk + ikvh) + ikρhaV̄ ′(ρh)

(
1 +

ik

2ρh

− k2

6ρ2
h

)
= 0. (8)

The traffic flow will remain stable as long as both roots of σk have negative imaginary
parts. According to the Nyquist criterion, we obtain [11]

−2ρ2
hV̄

′(ρh)

(
1 − k2

6ρ2
h

)2

< a. (9)

At the same time, the stability condition of the traffic flow can be obtained as follows:

a = −2ρ2
hV̄

′(ρh). (10)

Using the rules for solving quadratic equations, we get the result of equation (8):

σk + ikvh =
−a ±

√
a2 − 4ikρhaV̄ ′(ρh)

(
1 + ik

2ρh
− k2

6ρ2
h

)
2

. (11)

It is easy to draw the result that

Im(σk) ≈ −[vh + ρhV̄
′(ρh)]k + O(k3). (12)

From the imaginary part of σk , we see that the critical disturbance travels with a speed

c(ρh) = V̄ (ρh) + ρhV̄
′(ρh). (13)

3. Nonlinear analysis

Now we consider the OV model with the long-wave expansion near the stable state determined
by equation (10). The slow scales for space variable x and time variable t will be introduced
in calculating the long-wave behaviour. For the case of 0 < ε � 1, we can define the slow
variables X and T as [11, 14]

X = ε(x − ct), T = ε3t. (14)

Here c(ρh) = V̄ (ρh) + ρhV̄
′(ρh). In the reference frame moving with a speed c, we set ρ(x, t)

and v(x, t) as

ρ(x, t) = ρh + ε2ρ̂(X, T ), (15)

v(x, t) = vh + ε2v̂(X, T ). (16)
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Introducing these transforms into the fundamental equations (2) and (4), we obtain the
following dynamical equation of the density fluctuation:

ρ̂T + [2V̄ ′ + ρhV̄
′′]ρ̂ρ̂X +

V̄ ′

6ρh

ρ̂XXX

= ε
ρh

a

[
V̄ ′α
2ρh

ρ̂XX −
[
ρhV̄

′V̄ ′′ +
V̄ ′2

2
+

aV̄ ′′

4ρh

]
ρ̂2

XX − V̄ ′2

3ρh

ρ̂4X

]
(17)

where V̄ ′ = V̄ ′(ρh) = −ρ−2
h sech2γ , V̄ ′′ = V̄ ′′(ρh) = −2V̄ ′ρ−1

h (1 − ρ−1
h tanh γ ) and α = −4

V̄ ′ tanh γ with bn − hc = γ . Neglecting the term with the factor ε in equation (17), we obtain
the KdV equation as follows:

ρ̂T + [2V̄ ′ + ρhV̄
′′]ρ̂ρ̂X +

V̄ ′

6ρh

ρ̂XXX = 0. (18)

Using the real exponent approach [18], we obtain the one-soliton solution:

ρ̂ = Asech2[k(X + vT )], (19)

where

A =
12 V̄ ′(ρh)

6ρh

2V̄ ′ + ρhV̄ ′′ k
2 = k2

tanh γ
, v = −4

(
V̄ ′

6ρh

)
k2 = 2

3
ρ−3

h sech2γ k2.

When the distance is larger than the safety one, i.e. γ > 0, the solution is a soliton with the up
wave crest because of A > 0. It indicates that the traffic flow will tend toward the critical point
when the actual traffic density is a little larger than the safety distance. In contrast, we can
derive A < 0 corresponding to γ < 0. It also indicates that the traffic flow will tend toward the
critical point when the actual traffic density is a little smaller than that of the safety distance.

In order to discuss the effect of the order-ε correction, we write T = Mt , X = By and
ρ̂ = Cu. When

M = C = −6ρ3
hB

3/sech2γ, B = −
(

sech2γ

12ρ3
h tanh γ

)1/5

,

equation (17) will be transformed into

ut + 6uuy + uyyy = ε

[
6Bρ−1

h tanh γ uyy −
(

ρ−1
h tanh γ − 1

2

)
18ρ3

hB
4

sech2γ
u2

2y +
ρ−1

h

B
u4y

]
. (20)

Neglecting the term with ε, the above equation is simplified and its solution is u = 2η2sech2Z,
where Z = η(y − 4η2t).

By applying the direct approach, the dependence on time for the spectrum parameter η

will be decided by the correction part, namely [19–22]

dη

dt
= ε

4η

∫ +∞

−∞
dZ sech2ZH, (21)

where H = 6Bρ−1
h tanh γ uyy − (ρ−1

h tanh γ − 1
2 )

18ρ3
hB4

sech2γ
u2

2y + ρ−1
h

B
u4y . After calculation in

detail, the result becomes

dη

dt
= εη3 16ρ−1

h

B

[
−B2 tanh γ

5
−

(
ρ−1

h tanh γ − 1

2

)
ρ4

hB
5

sech2γ

12

7
η2 +

(
− 8

105
η2

)]
. (22)

The amplitude η can be rewritten as η = Bk, and the above equation becomes

kt = εk3

(
sech2γ

12ρ3
h tanh γ

)3/5

16ρ−1
h

[
tanh γ

5
−

(
1

15
− ρh

14 tanh γ

)
k2

]
. (23)
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Thus, the quality k2 always increases until the headway reaches the safety distance.
When the distance is equal to the safety distance, equation (18) degenerates to a linear

equation with the travelling wave solution:

ρ̂ = ρ̂

[
−

( |V̄ ′|
6ρh

)−1/3

X + T

]
. (24)

The derivate V ′ of the OV has a maximal value at the turning point bn = hc. Because
it is expected that the amplitude of the density wave scales as A ∝ ε near the critical
point [13,14,23], we can reset ρ(x, t) and v(x, t) in the reference frame moving with speed c

by writing

ρ(x, t) = ρ0 + ερ̂(X, T ), (25)

v(x, t) = v0 + εv̂(X, T ). (26)

Here c(ρ0) = v0 + ρ0V̄
′(ρ0) with the corresponding value at the critical point ρ0 and v0.

Moreover, we have a = 2(1 − ε2), V̄ ′ = −ρ−2
0 , V̄ ′′ = 2ρ−3

0 and V̄ ′′′ = −6ρ−4
0 + 2ρ−6

0 .
Substituting these results into the governing equations (2) and (4), and neglecting the effect of
the order-ε correction, we get the reduced equation as follows:

ρ̂T +
ρ−5

0

3
ρ̂3

X − ρ−4
0

6
ρ̂XXX = 0. (27)

This is the MKdV equation of the density fluctuation around the critical point. According
to different boundary conditions, the solution of the equation has the form of a kink
solution [12–14, 23]:

ρ̂ = A+ tanh[
√

1/2A+(X − A+2T )], (28)

or a soliton one [18, 19]:

ρ̂ = 2kηsech[2k(X − 4k2T )], (29)

respectively. Thus, the car-following model with the OV describes that the density fluctuation
in a traffic flow forms a local density wave automatically around the critical point.

4. Summary

The car-following model is one of the basic traffic models in which each driver can respond
to the surrounding traffic conditions. In the model, the driving strategy of a driver depends on
either the OV one or the desired one. Otherwise, Berg et al [17] have developed the OV model
into a continuous one. Because the terms ρx and ρxx appear spontaneously in the nonlinear
continuous model, the density fluctuation in traffic flow can be described by this model. It is
certain that the density fluctuation will form the soliton or the kink wave under some conditions.
Thus, the density wave can result in traffic congestion.

In this paper, two types of density waves induced by the traffic flow itself are found through
investigating the OV model by linear and nonlinear analyses. One is the soliton wave and the
other is the kink. The evolution of the soliton wave is also discussed. These results show that
vehicles tend to reach the safety distance when they are away from it. Compared with other
traffic models, the density fluctuation in our model is represented by explicit terms, which
means that the congestion is an intrinsic property of traffic flow.

The model is applicable only for single-lane flow with no overtaking for single species.
We can consider various ways of modifying our model for further studies. For example, the
present model assumes that the sensitivity of drivers is identical. One could therefore adopt a
model in which the sensitivity a depends on individual species for a multispecies system. It
could be expected that more abundant phenomena will present themselves.
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